A note on multiple imputation for method of moments estimation
S. Yang and
J. K. Kim
Biometrika, 2016, vol. 103, issue 1, 244-251
Abstract:
Multiple imputation is widely used for estimation in situations where there are missing data. Rubin (1987) provided an easily applicable formula for multiple imputation variance estimation, but its validity requires the congeniality condition of Meng (1994), which may not be satisfied for method of moments estimation. We give the asymptotic bias of Rubin's variance estimator when method of moments estimation is used in the complete-sample analysis for each imputed dataset. A new variance estimator based on over-imputation is proposed to provide asymptotically valid inference in this case.
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://hdl.handle.net/10.1093/biomet/asv073 (application/pdf)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:oup:biomet:v:103:y:2016:i:1:p:244-251.
Ordering information: This journal article can be ordered from
https://academic.oup.com/journals
Access Statistics for this article
Biometrika is currently edited by Paul Fearnhead
More articles in Biometrika from Biometrika Trust Oxford University Press, Great Clarendon Street, Oxford OX2 6DP, UK.
Bibliographic data for series maintained by Oxford University Press ().