EconPapers    
Economics at your fingertips  
 

Nonparametric Bayes inference on conditional independence

Tsuyoshi Kunihama and David B. Dunson

Biometrika, 2016, vol. 103, issue 1, 35-47

Abstract: In many application areas, a primary focus is on assessing evidence in the data refuting the assumption of independence of $Y$ and $X$ conditionally on $Z$, with $Y$ response variables, $X$ predictors of interest, and $Z$ covariates. Ideally, one would have methods available that avoid parametric assumptions, allow $Y, X, Z$ to be random variables on arbitrary spaces with arbitrary dimension, and accommodate rapid consideration of different candidate predictors. As a formal decision-theoretic approach has clear disadvantages in this context, we instead rely on an encompassing nonparametric Bayes model for the joint distribution of $Y$, $X$ and $Z$, with conditional mutual information used as a summary of the strength of conditional dependence. We construct a functional of the encompassing model and empirical measure for estimation of conditional mutual information. The implementation relies on a single Markov chain Monte Carlo run under the encompassing model, with conditional mutual information for candidate models calculated as a byproduct. We provide an asymptotic theory supporting the approach, and apply the method to variable selection. The methods are illustrated through simulations and criminology applications.

Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://hdl.handle.net/10.1093/biomet/asv060 (application/pdf)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:oup:biomet:v:103:y:2016:i:1:p:35-47.

Ordering information: This journal article can be ordered from
https://academic.oup.com/journals

Access Statistics for this article

Biometrika is currently edited by Paul Fearnhead

More articles in Biometrika from Biometrika Trust Oxford University Press, Great Clarendon Street, Oxford OX2 6DP, UK.
Bibliographic data for series maintained by Oxford University Press ().

 
Page updated 2025-03-19
Handle: RePEc:oup:biomet:v:103:y:2016:i:1:p:35-47.