EconPapers    
Economics at your fingertips  
 

Exponential tilting in Bayesian asymptotics

S. A. Kharroubi and T. J. Sweeting

Biometrika, 2016, vol. 103, issue 2, 337-349

Abstract: We use exponential tilting to obtain versions of asymptotic formulae for Bayesian computation that do not involve conditional maxima of the likelihood function, yielding a more stable computational procedure and significantly reducing computational time. In particular we present an alternative version of the Laplace approximation for a marginal posterior density. Implementation of the asymptotic formulae and a modified signed root based importance sampler are illustrated with an example.

Date: 2016
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://hdl.handle.net/10.1093/biomet/asw018 (application/pdf)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:oup:biomet:v:103:y:2016:i:2:p:337-349.

Ordering information: This journal article can be ordered from
https://academic.oup.com/journals

Access Statistics for this article

Biometrika is currently edited by Paul Fearnhead

More articles in Biometrika from Biometrika Trust Oxford University Press, Great Clarendon Street, Oxford OX2 6DP, UK.
Bibliographic data for series maintained by Oxford University Press ().

 
Page updated 2025-03-19
Handle: RePEc:oup:biomet:v:103:y:2016:i:2:p:337-349.