On exchangeable multinomial distributions
E. Olusegun George,
Kyeongmi Cheon,
Yilian Yuan and
Aniko Szabo
Biometrika, 2016, vol. 103, issue 2, 397-408
Abstract:
We derive an expression for the joint distribution of exchangeable multinomial random variables, which generalizes the multinomial distribution based on independent trials while retaining some of its important properties. Unlike de Finneti's representation theorem for a binary sequence, the exchangeable multinomial distribution derived here does not require that the finite set of random variables under consideration be a subset of an infinite sequence. Using expressions for higher moments and correlations, we show that the covariance matrix for exchangeable multinomial data has a different form from that usually assumed in the literature, and we analyse data from developmental toxicology studies. The proposed analyses have been implemented in R and are available on CRAN in the CorrBin package.
Date: 2016
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1093/biomet/asw009 (application/pdf)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:oup:biomet:v:103:y:2016:i:2:p:397-408.
Ordering information: This journal article can be ordered from
https://academic.oup.com/journals
Access Statistics for this article
Biometrika is currently edited by Paul Fearnhead
More articles in Biometrika from Biometrika Trust Oxford University Press, Great Clarendon Street, Oxford OX2 6DP, UK.
Bibliographic data for series maintained by Oxford University Press ().