EconPapers    
Economics at your fingertips  
 

Modelling complex survey data with population level information: an empirical likelihood approach

M. Oguz-Alper and Y. G. Berger

Biometrika, 2016, vol. 103, issue 2, 447-459

Abstract: Survey data are often collected with unequal probabilities from a stratified population. In many modelling situations, the parameter of interest is a subset of a set of parameters, with the others treated as nuisance parameters. We show that in this situation the empirical likelihood ratio statistic follows a chi-squared distribution asymptotically, under stratified single and multi-stage unequal probability sampling, with negligible sampling fractions. Simulation studies show that the empirical likelihood confidence interval may achieve better coverages and has more balanced tail error rates than standard approaches involving variance estimation, linearization or resampling.

Date: 2016
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://hdl.handle.net/10.1093/biomet/asw014 (application/pdf)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:oup:biomet:v:103:y:2016:i:2:p:447-459.

Ordering information: This journal article can be ordered from
https://academic.oup.com/journals

Access Statistics for this article

Biometrika is currently edited by Paul Fearnhead

More articles in Biometrika from Biometrika Trust Oxford University Press, Great Clarendon Street, Oxford OX2 6DP, UK.
Bibliographic data for series maintained by Oxford University Press ().

 
Page updated 2025-03-19
Handle: RePEc:oup:biomet:v:103:y:2016:i:2:p:447-459.