Variable selection for case-cohort studies with failure time outcome
Ai Ni,
Jianwen Cai and
Donglin Zeng
Biometrika, 2016, vol. 103, issue 3, 547-562
Abstract:
Case-cohort designs are widely used in large cohort studies to reduce the cost associated with covariate measurement. In many such studies the number of covariates is very large, so an efficient variable selection method is necessary. In this paper, we study the properties of a variable selection procedure using the smoothly clipped absolute deviation penalty in a case-cohort design with a diverging number of parameters. We establish the consistency and asymptotic normality of the maximum penalized pseudo-partial-likelihood estimator, and show that the proposed variable selection method is consistent and has an asymptotic oracle property. Simulation studies compare the finite-sample performance of the procedure with tuning parameter selection methods based on the Akaike information criterion and the Bayesian information criterion. We make recommendations for use of the proposed procedures in case-cohort studies, and apply them to the Busselton Health Study.
Date: 2016
References: View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://hdl.handle.net/10.1093/biomet/asw027 (application/pdf)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:oup:biomet:v:103:y:2016:i:3:p:547-562.
Ordering information: This journal article can be ordered from
https://academic.oup.com/journals
Access Statistics for this article
Biometrika is currently edited by Paul Fearnhead
More articles in Biometrika from Biometrika Trust Oxford University Press, Great Clarendon Street, Oxford OX2 6DP, UK.
Bibliographic data for series maintained by Oxford University Press ().