An adaptive two-sample test for high-dimensional means
Gongjun Xu,
Lifeng Lin,
Peng Wei and
Wei Pan
Biometrika, 2016, vol. 103, issue 3, 609-624
Abstract:
Several two-sample tests for high-dimensional data have been proposed recently, but they are powerful only against certain alternative hypotheses. In practice, since the true alternative hypothesis is unknown, it is unclear how to choose a powerful test. We propose an adaptive test that maintains high power across a wide range of situations and study its asymptotic properties. Its finite-sample performance is compared with that of existing tests. We apply it and other tests to detect possible associations between bipolar disease and a large number of single nucleotide polymorphisms on each chromosome based on data from a genome-wide association study. Numerical studies demonstrate the superior performance and high power of the proposed test across a wide spectrum of applications.
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (12)
Downloads: (external link)
http://hdl.handle.net/10.1093/biomet/asw029 (application/pdf)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:oup:biomet:v:103:y:2016:i:3:p:609-624.
Ordering information: This journal article can be ordered from
https://academic.oup.com/journals
Access Statistics for this article
Biometrika is currently edited by Paul Fearnhead
More articles in Biometrika from Biometrika Trust Oxford University Press, Great Clarendon Street, Oxford OX2 6DP, UK.
Bibliographic data for series maintained by Oxford University Press ().