EconPapers    
Economics at your fingertips  
 

Distribution of likelihood-based p-values under a local alternative hypothesis

Stephen M. S. Lee and G. Alastair Young

Biometrika, 2016, vol. 103, issue 3, 641-652

Abstract: We consider inference on a scalar parameter of interest in the presence of a nuisance parameter, using a likelihood-based statistic which is asymptotically normally distributed under the null hypothesis. Higher-order expansions are used to compare the repeated sampling distribution, under a general contiguous alternative hypothesis, of $p$-values calculated from the asymptotic normal approximation to the null sampling distribution of the statistic with the distribution of $p$-values calculated by bootstrap approximations. The results of comparisons in terms of power of different testing procedures under an alternative hypothesis are closely related to differences under the null hypothesis, specifically the extent to which testing procedures are conservative or liberal under the null. Empirical examples are given which demonstrate that higher-order asymptotic effects may be seen clearly in small-sample contexts.

Date: 2016
References: Add references at CitEc
Citations:

Downloads: (external link)
http://hdl.handle.net/10.1093/biomet/asw021 (application/pdf)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:oup:biomet:v:103:y:2016:i:3:p:641-652.

Ordering information: This journal article can be ordered from
https://academic.oup.com/journals

Access Statistics for this article

Biometrika is currently edited by Paul Fearnhead

More articles in Biometrika from Biometrika Trust Oxford University Press, Great Clarendon Street, Oxford OX2 6DP, UK.
Bibliographic data for series maintained by Oxford University Press ().

 
Page updated 2025-03-19
Handle: RePEc:oup:biomet:v:103:y:2016:i:3:p:641-652.