Distribution of likelihood-based p-values under a local alternative hypothesis
Stephen M. S. Lee and
G. Alastair Young
Biometrika, 2016, vol. 103, issue 3, 641-652
Abstract:
We consider inference on a scalar parameter of interest in the presence of a nuisance parameter, using a likelihood-based statistic which is asymptotically normally distributed under the null hypothesis. Higher-order expansions are used to compare the repeated sampling distribution, under a general contiguous alternative hypothesis, of $p$-values calculated from the asymptotic normal approximation to the null sampling distribution of the statistic with the distribution of $p$-values calculated by bootstrap approximations. The results of comparisons in terms of power of different testing procedures under an alternative hypothesis are closely related to differences under the null hypothesis, specifically the extent to which testing procedures are conservative or liberal under the null. Empirical examples are given which demonstrate that higher-order asymptotic effects may be seen clearly in small-sample contexts.
Date: 2016
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1093/biomet/asw021 (application/pdf)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:oup:biomet:v:103:y:2016:i:3:p:641-652.
Ordering information: This journal article can be ordered from
https://academic.oup.com/journals
Access Statistics for this article
Biometrika is currently edited by Paul Fearnhead
More articles in Biometrika from Biometrika Trust Oxford University Press, Great Clarendon Street, Oxford OX2 6DP, UK.
Bibliographic data for series maintained by Oxford University Press ().