A theoretical study of Stein's covariance estimator
Bala Rajaratnam and
Dario Vincenzi
Biometrika, 2016, vol. 103, issue 3, 653-666
Abstract:
Stein proposed an estimator to address the poor performance of the sample covariance matrix for samples of small size. The estimator does not impose sparsity conditions and uses an isotonizing algorithm to preserve the order of the sample eigenvalues. Despite its superior numerical performance, its theoretical properties are not well understood. We demonstrate that Stein's covariance estimator gives modest risk reductions when it is not isotonized, and when it is isotonized the risk reductions are significant. Three broad regimes of the estimator's behaviour are identified.
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://hdl.handle.net/10.1093/biomet/asw030 (application/pdf)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:oup:biomet:v:103:y:2016:i:3:p:653-666.
Ordering information: This journal article can be ordered from
https://academic.oup.com/journals
Access Statistics for this article
Biometrika is currently edited by Paul Fearnhead
More articles in Biometrika from Biometrika Trust Oxford University Press, Great Clarendon Street, Oxford OX2 6DP, UK.
Bibliographic data for series maintained by Oxford University Press ().