EconPapers    
Economics at your fingertips  
 

On random- and systematic-scan samplers

C. Andrieu

Biometrika, 2016, vol. 103, issue 3, 719-726

Abstract: We introduce a simple time-homogeneous Markov embedding of a class of time-inhomogeneous Markov chains widely used in the context of Monte Carlo sampling algorithms, such as systematic-scan Metropolis-within-Gibbs samplers. This allows us to establish that systematic-scan samplers involving two factors are always better than their random-scan counterparts, when asymptotic variance is the criterion of interest. We also show that this embedding sheds some light on the result of Maire et al. (2014) and discuss the scenario involving more than two factors.

Date: 2016
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://hdl.handle.net/10.1093/biomet/asw019 (application/pdf)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:oup:biomet:v:103:y:2016:i:3:p:719-726.

Ordering information: This journal article can be ordered from
https://academic.oup.com/journals

Access Statistics for this article

Biometrika is currently edited by Paul Fearnhead

More articles in Biometrika from Biometrika Trust Oxford University Press, Great Clarendon Street, Oxford OX2 6DP, UK.
Bibliographic data for series maintained by Oxford University Press ().

 
Page updated 2025-03-19
Handle: RePEc:oup:biomet:v:103:y:2016:i:3:p:719-726.