EconPapers    
Economics at your fingertips  
 

A goodness-of-fit test for structural nested mean models

S. Yang and J. J. Lok

Biometrika, 2016, vol. 103, issue 3, 734-741

Abstract: Coarse structural nested mean models are tools for estimating treatment effects from longitudinal observational data with time-dependent confounding. There is, however, no guidance on how to specify the treatment effect model, and model misspecification can lead to bias. We derive a goodness-of-fit test based on modified over-identification restrictions tests for evaluating a treatment effect model, and show that our test is doubly robust in the sense that, with a correct treatment effect model, the test has the correct Type I error if either the treatment initiation model or a nuisance regression outcome model is correctly specified. In a simulation study, we show that the test has correct Type I error and can detect model misspecification. We use the test to study how the timing of antiretroviral treatment initiation after HIV infection predicts the effect of one year of treatment in HIV-positive patients with acute and early infection.

Date: 2016
References: View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://hdl.handle.net/10.1093/biomet/asw031 (application/pdf)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:oup:biomet:v:103:y:2016:i:3:p:734-741.

Ordering information: This journal article can be ordered from
https://academic.oup.com/journals

Access Statistics for this article

Biometrika is currently edited by Paul Fearnhead

More articles in Biometrika from Biometrika Trust Oxford University Press, Great Clarendon Street, Oxford OX2 6DP, UK.
Bibliographic data for series maintained by Oxford University Press ().

 
Page updated 2025-03-19
Handle: RePEc:oup:biomet:v:103:y:2016:i:3:p:734-741.