On the win-ratio statistic in clinical trials with multiple types of event
D. Oakes
Biometrika, 2016, vol. 103, issue 3, 742-745
Abstract:
Pocock et al. (2012), following Finkelstein & Schoenfeld (1999), has popularized the win ratio for analysis of controlled clinical trials with multiple types of outcome event. The approach uses pairwise comparisons between patients in the treatment and control groups using a primary outcome, say the time to death, with ties broken using a secondary outcome, say the time to hospitalization. In general the observed pairwise preferences and the weight they attach to the component rankings will depend on the distribution of potential follow-up time. We present expressions for the win and loss probabilities for general bivariate survival models when follow-up of all patients is limited to a specified time horizon. In the special case of a bivariate Lehmann model we show that the win ratio does not depend on this horizon. We show how the win ratio may be estimated nonparametrically or from a parametric model. Extensions to events of three or more types are described. Application of the method of marginal estimation due to Wei et al. (1989) to this problem is described.
Date: 2016
References: View complete reference list from CitEc
Citations: View citations in EconPapers (10)
Downloads: (external link)
http://hdl.handle.net/10.1093/biomet/asw026 (application/pdf)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:oup:biomet:v:103:y:2016:i:3:p:742-745.
Ordering information: This journal article can be ordered from
https://academic.oup.com/journals
Access Statistics for this article
Biometrika is currently edited by Paul Fearnhead
More articles in Biometrika from Biometrika Trust Oxford University Press, Great Clarendon Street, Oxford OX2 6DP, UK.
Bibliographic data for series maintained by Oxford University Press ().