EconPapers    
Economics at your fingertips  
 

Approximating fragmented functional data by segments of Markov chains

A. Delaigle and P. Hall

Biometrika, 2016, vol. 103, issue 4, 779-799

Abstract: We consider curve extension and linear prediction for functional data observed only on a part of their domain, in the form of fragments. We suggest an approach based on a combination of Markov chains and nonparametric smoothing techniques, which enables us to extend the observed fragments and construct approximated prediction intervals around them, construct mean and covariance function estimators, and derive a linear predictor. The procedure is illustrated on real and simulated data.

Keywords: Crossvalidation; Functional principal component; Incomplete curve; Markov chain (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)

Downloads: (external link)
http://hdl.handle.net/10.1093/biomet/asw040 (application/pdf)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:oup:biomet:v:103:y:2016:i:4:p:779-799.

Ordering information: This journal article can be ordered from
https://academic.oup.com/journals

Access Statistics for this article

Biometrika is currently edited by Paul Fearnhead

More articles in Biometrika from Biometrika Trust Oxford University Press, Great Clarendon Street, Oxford OX2 6DP, UK.
Bibliographic data for series maintained by Oxford University Press ().

 
Page updated 2025-03-19
Handle: RePEc:oup:biomet:v:103:y:2016:i:4:p:779-799.