In-sample forecasting with local linear survival densities
M. Hiabu,
E. Mammen,
M. D. Martìnez-Miranda and
J. P. Nielsen
Biometrika, 2016, vol. 103, issue 4, 843-859
Abstract:
In this paper, in-sample forecasting is defined as forecasting a structured density to sets where it is unobserved. The structured density consists of one-dimensional in-sample components that identify the density on such sets. We focus on the multiplicative density structure, which has recently been seen as the underlying structure of non-life insurance forecasts. In non-life insurance, the in-sample area is defined as one triangle and the forecasting area as the triangle which, added to the first triangle, completes a square. In recent approaches, two one-dimensional components are estimated by projecting an unstructured two-dimensional density estimator onto the space of multiplicatively separable functions. We show that time-reversal reduces the problem to two one-dimensional problems, where the one-dimensional data are left-truncated and a one-dimensional survival density estimator is needed. We then use the local linear density smoother with weighted crossvalidated and do-validated bandwidth selectors. Full asymptotic theory is provided, with and without time-reversal. Finite-sample studies and an application to non-life insurance are included.
Keywords: Aalen’s multiplicative model; Crossvalidation; Density estimation; Do-validation; Local linear kernel estimation; Survival data. (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://hdl.handle.net/10.1093/biomet/asw038 (application/pdf)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:oup:biomet:v:103:y:2016:i:4:p:843-859.
Ordering information: This journal article can be ordered from
https://academic.oup.com/journals
Access Statistics for this article
Biometrika is currently edited by Paul Fearnhead
More articles in Biometrika from Biometrika Trust Oxford University Press, Great Clarendon Street, Oxford OX2 6DP, UK.
Bibliographic data for series maintained by Oxford University Press ().