Multivariate spatial covariance models: a conditional approach
Noel Cressie and
Andrew Zammit-Mangion
Biometrika, 2016, vol. 103, issue 4, 915-935
Abstract:
Multivariate geostatistics is based on modelling all covariances between all possible combinations of two or more variables at any sets of locations in a continuously indexed domain. Multivariate spatial covariance models need to be built with care, since any covariance matrix that is derived from such a model must be nonnegative-definite. In this article, we develop a conditional approach for spatial-model construction whose validity conditions are easy to check. We start with bivariate spatial covariance models and go on to demonstrate the approach’s connection to multivariate models defined by networks of spatial variables. In some circumstances, such as modelling respiratory illness conditional on air pollution, the direction of conditional dependence is clear. When it is not, the two directional models can be compared. More generally, the graph structure of the network reduces the number of possible models to compare. Model selection then amounts to finding possible causative links in the network. We demonstrate our conditional approach on surface temperature and pressure data, where the role of the two variables is seen to be asymmetric.
Keywords: Asymmetry; Cross-covariance function; Directed acyclic graph; Kriging; Multivariate geostatistics (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
http://hdl.handle.net/10.1093/biomet/asw045 (application/pdf)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:oup:biomet:v:103:y:2016:i:4:p:915-935.
Ordering information: This journal article can be ordered from
https://academic.oup.com/journals
Access Statistics for this article
Biometrika is currently edited by Paul Fearnhead
More articles in Biometrika from Biometrika Trust Oxford University Press, Great Clarendon Street, Oxford OX2 6DP, UK.
Bibliographic data for series maintained by Oxford University Press ().