EconPapers    
Economics at your fingertips  
 

Density estimation in the two-sample problem with likelihood ratio ordering

Tao Yu, Pengfei Li and Jing Qin

Biometrika, 2017, vol. 104, issue 1, 141-152

Abstract: SUMMARY In this paper, we propose a method for estimating the probability density functions in a two-sample problem where the ratio of the densities is monotone. This problem has been widely identified in the literature, but effective solution methods, in which the estimates should be probability densities and the corresponding density ratio should inherit monotonicity, are unavailable. If these conditions are not satisfied, the applications of the resultant density estimates might be limited. We propose estimates for which the ratio inherits the monotonicity property, and we explore their theoretical properties. One implication is that the corresponding receiver operating characteristic curve estimate is concave. Through numerical studies, we observe that both the density estimates and the receiver operating characteristic curve estimate from our method outperform those resulting directly from kernel density estimates, particularly when the sample size is relatively small.

Keywords: Contractivity; Greatest convex minorant; Likelihood ratio ordering; Pool-adjacent-violators algorithm; Smoothed likelihood; Weighted isotonic regression (search for similar items in EconPapers)
Date: 2017
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://hdl.handle.net/10.1093/biomet/asw069 (application/pdf)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:oup:biomet:v:104:y:2017:i:1:p:141-152.

Ordering information: This journal article can be ordered from
https://academic.oup.com/journals

Access Statistics for this article

Biometrika is currently edited by Paul Fearnhead

More articles in Biometrika from Biometrika Trust Oxford University Press, Great Clarendon Street, Oxford OX2 6DP, UK.
Bibliographic data for series maintained by Oxford University Press ().

 
Page updated 2025-03-19
Handle: RePEc:oup:biomet:v:104:y:2017:i:1:p:141-152.