A note on multiple imputation under complex sampling
J. K. Kim and
S. Yang
Biometrika, 2017, vol. 104, issue 1, 221-228
Abstract:
SUMMARY Multiple imputation is popular for handling item nonresponse in survey sampling. Current multiple imputation techniques with complex survey data assume that the sampling design is ignorable. In this paper, we propose a new multiple imputation procedure for parametric inference without this assumption. Instead of using the sample-data likelihood, we use the sampling distribution of the pseudo maximum likelihood estimator to derive the posterior distribution of the parameters. The asymptotic properties of the proposed method are investigated. A simulation study confirms that the new procedure provides unbiased point estimation and valid confidence intervals with correct coverage properties whether or not the sampling design is ignorable.
Keywords: Approximate Bayesian computation; Bayesian inference; Informative sampling; Item nonresponse; Pseudo maximum likelihood estimator (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1093/biomet/asw058 (application/pdf)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:oup:biomet:v:104:y:2017:i:1:p:221-228.
Ordering information: This journal article can be ordered from
https://academic.oup.com/journals
Access Statistics for this article
Biometrika is currently edited by Paul Fearnhead
More articles in Biometrika from Biometrika Trust Oxford University Press, Great Clarendon Street, Oxford OX2 6DP, UK.
Bibliographic data for series maintained by Oxford University Press ().