EconPapers    
Economics at your fingertips  
 

Selective factor extraction in high dimensions

Yiyuan She

Biometrika, 2017, vol. 104, issue 1, 97-110

Abstract: SUMMARY This paper studies simultaneous feature selection and extraction in supervised and unsupervised learning. We propose and investigate selective reduced rank regression for constructing optimal explanatory factors from a parsimonious subset of input features. The proposed estimators enjoy sharp oracle inequalities, and with a predictive information criterion for model selection, they adapt to unknown sparsity by controlling both rank and row support of the coefficient matrix. A class of algorithms is developed that can accommodate various convex and nonconvex sparsity-inducing penalties, and can be used for rank-constrained variable screening in high-dimensional multivariate data. The paper also showcases applications in macroeconomics and computer vision to demonstrate how low-dimensional data structures can be effectively captured by joint variable selection and projection.

Keywords: Information criterion; Nonconvex optimization; Oracle inequality; Principal component analysis; Reduced rank regression; Variable screening. (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)

Downloads: (external link)
http://hdl.handle.net/10.1093/biomet/asw059 (application/pdf)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:oup:biomet:v:104:y:2017:i:1:p:97-110.

Ordering information: This journal article can be ordered from
https://academic.oup.com/journals

Access Statistics for this article

Biometrika is currently edited by Paul Fearnhead

More articles in Biometrika from Biometrika Trust Oxford University Press, Great Clarendon Street, Oxford OX2 6DP, UK.
Bibliographic data for series maintained by Oxford University Press ().

 
Page updated 2025-03-19
Handle: RePEc:oup:biomet:v:104:y:2017:i:1:p:97-110.