Sparse Gaussian graphical model estimation via alternating minimization
Onkar Dalal and
Bala Rajaratnam
Biometrika, 2017, vol. 104, issue 2, 379-395
Abstract:
SummarySeveral methods have recently been proposed for estimating sparse Gaussian graphical models using $\ell_{1}$-regularization on the inverse covariance or precision matrix. Despite recent advances, contemporary applications require even faster methods to handle ill-conditioned high-dimensional datasets. In this paper, we propose a new method for solving the sparse inverse covariance estimation problem using the alternating minimization algorithm, which effectively works as a proximal gradient algorithm on the dual problem. Our approach has several advantages: it is faster than state-of-the-art algorithms by many orders of magnitude; its global linear convergence has been rigorously demonstrated, underscoring its good theoretical properties; it facilitates additional constraints on pairwise or marginal relationships between feature pairs based on domain-specific knowledge; and it is better at handling extremely ill-conditioned problems. Our algorithm is shown to be more accurate and faster on simulated and real datasets.
Keywords: Graphical model; Projected gradient method; Sparse inverse covariance matrix (search for similar items in EconPapers)
Date: 2017
References: View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://hdl.handle.net/10.1093/biomet/asx003 (application/pdf)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:oup:biomet:v:104:y:2017:i:2:p:379-395.
Ordering information: This journal article can be ordered from
https://academic.oup.com/journals
Access Statistics for this article
Biometrika is currently edited by Paul Fearnhead
More articles in Biometrika from Biometrika Trust Oxford University Press, Great Clarendon Street, Oxford OX2 6DP, UK.
Bibliographic data for series maintained by Oxford University Press ().