Nonlinear shrinkage estimation of large integrated covariance matrices
Clifford Lam,
Phoenix Feng and
Charlie Hu
Biometrika, 2017, vol. 104, issue 2, 481-488
Abstract:
SummaryIntegrated covariance matrices arise in intraday models of asset returns, which allow volatility to change over the trading day. When the number of assets is large, the natural estimator of such a matrix suffers from bias due to extreme eigenvalues. We introduce a novel nonlinear shrinkage estimator for the integrated covariance matrix which shrinks the extreme eigenvalues of a realized covariance matrix back to an acceptable level, and enjoys a certain asymptotic efficiency when the number of assets is of the same order as the number of data points. Novel maximum exposure and actual risk bounds are derived when our estimator is used in constructing the minimum variance portfolio. In simulations and a real-data analysis, our estimator performs favourably in comparison with other methods.
Keywords: Extreme eigenvalue; High dimension; Intraday volatility; Maximum exposure bound; Portfolio allocation; Realized covariance (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://hdl.handle.net/10.1093/biomet/asx021 (application/pdf)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:oup:biomet:v:104:y:2017:i:2:p:481-488.
Ordering information: This journal article can be ordered from
https://academic.oup.com/journals
Access Statistics for this article
Biometrika is currently edited by Paul Fearnhead
More articles in Biometrika from Biometrika Trust Oxford University Press, Great Clarendon Street, Oxford OX2 6DP, UK.
Bibliographic data for series maintained by Oxford University Press ().