EconPapers    
Economics at your fingertips  
 

Optimal Bayes classifiers for functional data and density ratios

Xiongtao Dai, Hans-Georg Müller and Fang Yao

Biometrika, 2017, vol. 104, issue 3, 545-560

Abstract: SummaryBayes classifiers for functional data pose a challenge. One difficulty is that probability density functions do not exist for functional data, so the classical Bayes classifier using density quotients needs to be modified. We propose to use density ratios of projections onto a sequence of eigenfunctions that are common to the groups to be classified. The density ratios are then factorized into density ratios of individual projection scores, reducing the classification problem to obtaining a series of one-dimensional nonparametric density estimates. The proposed classifiers can be viewed as an extension to functional data of some of the earliest nonparametric Bayes classifiers that were based on simple density ratios in the one-dimensional case. By means of the factorization of the density quotients, the curse of dimensionality that would otherwise severely affect Bayes classifiers for functional data can be avoided. We demonstrate that in the case of Gaussian functional data, the proposed functional Bayes classifier reduces to a functional version of the classical quadratic discriminant. A study of the asymptotic behaviour of the proposed classifiers in the large-sample limit shows that under certain conditions the misclassification rate converges to zero, a phenomenon that has been referred to as perfect classification. The proposed classifiers also perform favourably in finite-sample settings, as we demonstrate through comparisons with other functional classifiers in simulations and various data applications, including spectral data, functional magnetic resonance imaging data from attention deficit hyperactivity disorder patients, and yeast gene expression data.

Keywords: Density estimation; Functional classification; Functional principal component analysis; Gaussian process; Quadratic discriminant analysis (search for similar items in EconPapers)
Date: 2017
References: Add references at CitEc
Citations: View citations in EconPapers (8)

Downloads: (external link)
http://hdl.handle.net/10.1093/biomet/asx024 (application/pdf)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:oup:biomet:v:104:y:2017:i:3:p:545-560.

Ordering information: This journal article can be ordered from
https://academic.oup.com/journals

Access Statistics for this article

Biometrika is currently edited by Paul Fearnhead

More articles in Biometrika from Biometrika Trust Oxford University Press, Great Clarendon Street, Oxford OX2 6DP, UK.
Bibliographic data for series maintained by Oxford University Press ().

 
Page updated 2025-03-19
Handle: RePEc:oup:biomet:v:104:y:2017:i:3:p:545-560.