Projection correlation between two random vectors
Liping Zhu,
Kai Xu,
Runze Li and
Wei Zhong
Biometrika, 2017, vol. 104, issue 4, 829-843
Abstract:
We propose the use of projection correlation to characterize dependence between two random vectors. Projection correlation has several appealing properties. It equals zero if and only if the two random vectors are independent, it is not sensitive to the dimensions of the two random vectors, it is invariant with respect to the group of orthogonal transformations, and its estimation is free of tuning parameters and does not require moment conditions on the random vectors. We show that the sample estimate of the projection correction is $n$-consistent if the two random vectors are independent and root-$n$-consistent otherwise. Monte Carlo simulation studies indicate that the projection correlation has higher power than the distance correlation and the ranks of distances in tests of independence, especially when the dimensions are relatively large or the moment conditions required by the distance correlation are violated.
Keywords: Distance correlation; Projection correlation; Ranks of distance (search for similar items in EconPapers)
Date: 2017
References: Add references at CitEc
Citations: View citations in EconPapers (15)
Downloads: (external link)
http://hdl.handle.net/10.1093/biomet/asx043 (application/pdf)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:oup:biomet:v:104:y:2017:i:4:p:829-843.
Ordering information: This journal article can be ordered from
https://academic.oup.com/journals
Access Statistics for this article
Biometrika is currently edited by Paul Fearnhead
More articles in Biometrika from Biometrika Trust Oxford University Press, Great Clarendon Street, Oxford OX2 6DP, UK.
Bibliographic data for series maintained by Oxford University Press ().