On two-stage estimation of structural instrumental variable models
Byeong Yeob Choi,
Jason P Fine and
M Alan Brookhart
Biometrika, 2017, vol. 104, issue 4, 881-899
Abstract:
SummaryTwo-stage least squares estimation is popular for structural equation models with unmeasured confounders. In such models, both the outcome and the exposure are assumed to follow linear models conditional on the measured confounders and instrumental variable, which is related to the outcome only via its relation with the exposure. We consider data where both the outcome and the exposure may be incompletely observed, with particular attention to the case where both are censored event times. A general class of two-stage minimum distance estimators is proposed that separately fits linear models for the outcome and exposure and then uses a minimum distance criterion based on the reduced-form model for the outcome to estimate the regression parameters of interest. An optimal minimum distance estimator is identified which may be superior to the usual two-stage least squares estimator with fully observed data. Simulation studies demonstrate that the proposed methods perform well with realistic sample sizes. Their practical utility is illustrated in a study of the comparative effectiveness of colon cancer treatments, where the effect of chemotherapy on censored survival times may be confounded with patient status.
Keywords: Censored data; Endogeneity; Instrumental variable; Resampling; Unmeasured confounder (search for similar items in EconPapers)
Date: 2017
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1093/biomet/asx056 (application/pdf)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:oup:biomet:v:104:y:2017:i:4:p:881-899.
Ordering information: This journal article can be ordered from
https://academic.oup.com/journals
Access Statistics for this article
Biometrika is currently edited by Paul Fearnhead
More articles in Biometrika from Biometrika Trust Oxford University Press, Great Clarendon Street, Oxford OX2 6DP, UK.
Bibliographic data for series maintained by Oxford University Press ().