Blocking strategies and stability of particle Gibbs samplers
S S Singh,
F Lindsten and
E Moulines
Biometrika, 2017, vol. 104, issue 4, 953-969
Abstract:
SummarySampling from the posterior probability distribution of the latent states of a hidden Markov model is nontrivial even in the context of Markov chain Monte Carlo. To address this, Andrieu et al. (2010) proposed a way of using a particle filter to construct a Markov kernel that leaves the posterior distribution invariant. Recent theoretical results have established the uniform ergodicity of this Markov kernel and shown that the mixing rate does not deteriorate provided the number of particles grows at least linearly with the number of latent states. However, this gives rise to a cost per application of the kernel that is quadratic in the number of latent states, which can be prohibitive for long observation sequences. Using blocking strategies, we devise samplers that have a stable mixing rate for a cost per iteration that is linear in the number of latent states and which are easily parallelizable.
Keywords: Hidden Markov model; Markov chain Monte Carlo; Particle filter; Particle Gibbs sampling (search for similar items in EconPapers)
Date: 2017
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1093/biomet/asx051 (application/pdf)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:oup:biomet:v:104:y:2017:i:4:p:953-969.
Ordering information: This journal article can be ordered from
https://academic.oup.com/journals
Access Statistics for this article
Biometrika is currently edited by Paul Fearnhead
More articles in Biometrika from Biometrika Trust Oxford University Press, Great Clarendon Street, Oxford OX2 6DP, UK.
Bibliographic data for series maintained by Oxford University Press ().