Shape-constrained partial identification of a population mean under unknown probabilities of sample selection
L W Miratrix,
S Wager and
J R Zubizarreta
Biometrika, 2018, vol. 105, issue 1, 103-114
Abstract:
Summary Estimating a population mean from a sample obtained with unknown selection probabilities is important in the biomedical and social sciences. Using a ratio estimator, Aronow & Lee (2013) proposed a method for partial identification of the mean by allowing the unknown selection probabilities to vary arbitrarily between two fixed values. In this paper, we show how to use auxiliary shape constraints on the population outcome distribution, such as symmetry or log-concavity, to obtain tighter bounds on the population mean. We use this method to estimate the performance of Aymara students, an ethnic minority in the north of Chile, in a national educational standardized test. We implement this method in the R package scbounds.
Keywords: Partial identification; Sensitivity analysis; Survey sampling (search for similar items in EconPapers)
Date: 2018
References: Add references at CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://hdl.handle.net/10.1093/biomet/asx077 (application/pdf)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:oup:biomet:v:105:y:2018:i:1:p:103-114.
Ordering information: This journal article can be ordered from
https://academic.oup.com/journals
Access Statistics for this article
Biometrika is currently edited by Paul Fearnhead
More articles in Biometrika from Biometrika Trust Oxford University Press, Great Clarendon Street, Oxford OX2 6DP, UK.
Bibliographic data for series maintained by Oxford University Press ().