Scalar-on-image regression via the soft-thresholded Gaussian process
Jian Kang,
Brian J Reich and
Ana-Maria Staicu
Biometrika, 2018, vol. 105, issue 1, 165-184
Abstract:
Summary This work concerns spatial variable selection for scalar-on-image regression. We propose a new class of Bayesian nonparametric models and develop an efficient posterior computational algorithm. The proposed soft-thresholded Gaussian process provides large prior support over the class of piecewise-smooth, sparse, and continuous spatially varying regression coefficient functions. In addition, under some mild regularity conditions the soft-thresholded Gaussian process prior leads to the posterior consistency for parameter estimation and variable selection for scalar-on-image regression, even when the number of predictors is larger than the sample size. The proposed method is compared to alternatives via simulation and applied to an electroencephalography study of alcoholism.
Keywords: Electroencephalography; Gaussian process; Posterior consistency; Spatial variable selection (search for similar items in EconPapers)
Date: 2018
References: Add references at CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://hdl.handle.net/10.1093/biomet/asx075 (application/pdf)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:oup:biomet:v:105:y:2018:i:1:p:165-184.
Ordering information: This journal article can be ordered from
https://academic.oup.com/journals
Access Statistics for this article
Biometrika is currently edited by Paul Fearnhead
More articles in Biometrika from Biometrika Trust Oxford University Press, Great Clarendon Street, Oxford OX2 6DP, UK.
Bibliographic data for series maintained by Oxford University Press ().