Testing for the presence of significant covariates through conditional marginal regression
Yanlin Tang,
Huixia Judy Wang and
Emre Barut
Biometrika, 2018, vol. 105, issue 1, 57-71
Abstract:
Summary Researchers sometimes have a priori information on the relative importance of predictors that can be used to screen out covariates. An important question is whether any of the discarded covariates have predictive power when the most relevant predictors are included in the model. We consider testing whether any discarded covariate is significant conditional on some pre-chosen covariates. We propose a maximum-type test statistic and show that it has a nonstandard asymptotic distribution, giving rise to the conditional adaptive resampling test. To accommodate signals of unknown sparsity, we develop a hybrid test statistic, which is a weighted average of maximum- and sum-type statistics. We prove the consistency of the test procedure under general assumptions and illustrate how it can be used as a stopping rule in forward regression. We show, through simulation, that the proposed method provides adequate control of the familywise error rate with competitive power for both sparse and dense signals, even in high-dimensional cases, and we demonstrate its advantages in cases where the covariates are heavily correlated. We illustrate the application of our method by analysing an expression quantitative trait locus dataset.
Keywords: Adaptive resampling; Conditional marginal regression; Forward selection; Hybrid test (search for similar items in EconPapers)
Date: 2018
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1093/biomet/asx061 (application/pdf)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:oup:biomet:v:105:y:2018:i:1:p:57-71.
Ordering information: This journal article can be ordered from
https://academic.oup.com/journals
Access Statistics for this article
Biometrika is currently edited by Paul Fearnhead
More articles in Biometrika from Biometrika Trust Oxford University Press, Great Clarendon Street, Oxford OX2 6DP, UK.
Bibliographic data for series maintained by Oxford University Press ().