Approximate Bayesian inference under informative sampling
Zhao-Hua Wang (),
J K Kim and
S Yang
Biometrika, 2018, vol. 105, issue 1, 91-102
Abstract:
Summary Statistical inference with complex survey data is challenging because the sampling design can be informative, and ignoring it can produce misleading results. Current methods of Bayesian inference under complex sampling assume that the sampling design is noninformative for the specified model. In this paper, we propose a Bayesian approach which uses the sampling distribution of a summary statistic to derive the posterior distribution of the parameters of interest. Asymptotic properties of the method are investigated. It is directly applicable to combining information from two independent surveys and to calibration estimation in survey sampling. A simulation study confirms that it can provide valid estimation under informative sampling. We apply it to a measurement error problem using data from the Korean Longitudinal Study of Aging.
Keywords: Analytic inference; Complex sampling; Predictive inference; Pseudolikelihood (search for similar items in EconPapers)
Date: 2018
References: Add references at CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://hdl.handle.net/10.1093/biomet/asx073 (application/pdf)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:oup:biomet:v:105:y:2018:i:1:p:91-102.
Ordering information: This journal article can be ordered from
https://academic.oup.com/journals
Access Statistics for this article
Biometrika is currently edited by Paul Fearnhead
More articles in Biometrika from Biometrika Trust Oxford University Press, Great Clarendon Street, Oxford OX2 6DP, UK.
Bibliographic data for series maintained by Oxford University Press ().