Asymptotic post-selection inference for the Akaike information criterion
Ali Charkhi and
Gerda Claeskens
Biometrika, 2018, vol. 105, issue 3, 645-664
Abstract:
SummaryIgnoring the model selection step in inference after selection is harmful. In this paper we study the asymptotic distribution of estimators after model selection using the Akaike information criterion. First, we consider the classical setting in which a true model exists and is included in the candidate set of models. We exploit the overselection property of this criterion in constructing a selection region, and we obtain the asymptotic distribution of estimators and linear combinations thereof conditional on the selected model. The limiting distribution depends on the set of competitive models and on the smallest overparameterized model. Second, we relax the assumption on the existence of a true model and obtain uniform asymptotic results. We use simulation to study the resulting post-selection distributions and to calculate confidence regions for the model parameters, and we also apply the method to a diabetes dataset.
Keywords: Akaike information criterion; Confidence region; Likelihood model; Model selection; Post-selection inference (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://hdl.handle.net/10.1093/biomet/asy018 (application/pdf)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:oup:biomet:v:105:y:2018:i:3:p:645-664.
Ordering information: This journal article can be ordered from
https://academic.oup.com/journals
Access Statistics for this article
Biometrika is currently edited by Paul Fearnhead
More articles in Biometrika from Biometrika Trust Oxford University Press, Great Clarendon Street, Oxford OX2 6DP, UK.
Bibliographic data for series maintained by Oxford University Press ().