EconPapers    
Economics at your fingertips  
 

Integrative linear discriminant analysis with guaranteed error rate improvement

Quefeng Li and Lexin Li

Biometrika, 2018, vol. 105, issue 4, 917-930

Abstract: SummaryMultiple types of data measured on a common set of subjects arise in many areas. Numerous empirical studies have found that integrative analysis of such data can result in better statistical performance in terms of prediction and feature selection. However, the advantages of integrative analysis have mostly been demonstrated empirically. In the context of two-class classification, we propose an integrative linear discriminant analysis method and establish a theoretical guarantee that it achieves a smaller classification error than running linear discriminant analysis on each data type individually. We address the issues of outliers and missing values, frequently encountered in integrative analysis, and illustrate our method through simulations and a neuroimaging study of Alzheimer’s disease.

Keywords: Bayes error; High-dimensional classification; Integrative analysis; Linear discriminant analysis; Multi-type data; Regularization (search for similar items in EconPapers)
Date: 2018
References: Add references at CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://hdl.handle.net/10.1093/biomet/asy047 (application/pdf)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:oup:biomet:v:105:y:2018:i:4:p:917-930.

Ordering information: This journal article can be ordered from
https://academic.oup.com/journals

Access Statistics for this article

Biometrika is currently edited by Paul Fearnhead

More articles in Biometrika from Biometrika Trust Oxford University Press, Great Clarendon Street, Oxford OX2 6DP, UK.
Bibliographic data for series maintained by Oxford University Press ().

 
Page updated 2025-03-19
Handle: RePEc:oup:biomet:v:105:y:2018:i:4:p:917-930.