Continuous testing for Poisson process intensities: a new perspective on scanning statistics
Franck Picard,
Patricia Reynaud-Bouret and
Etienne Roquain
Biometrika, 2018, vol. 105, issue 4, 931-944
Abstract:
SUMMARYWe propose a continuous testing framework to test the intensities of Poisson processes that allows a rigorous definition of the complete testing procedure, from an infinite number of hypotheses to joint error rates. Our work extends procedures based on scanning windows by controlling the familywise error rate and the false discovery rate in a non-asymptotic manner and in a continuous way. We introduce the p-value process on which the decision rule is based. Our method is applied in neuroscience via the standard homogeneity and two-sample tests.
Keywords: False discovery rate; Familywise error rate; Multiple testing; Poisson process (search for similar items in EconPapers)
Date: 2018
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1093/biomet/asy044 (application/pdf)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:oup:biomet:v:105:y:2018:i:4:p:931-944.
Ordering information: This journal article can be ordered from
https://academic.oup.com/journals
Access Statistics for this article
Biometrika is currently edited by Paul Fearnhead
More articles in Biometrika from Biometrika Trust Oxford University Press, Great Clarendon Street, Oxford OX2 6DP, UK.
Bibliographic data for series maintained by Oxford University Press ().