Testing for independence in arbitrary distributions
C Genest,
J G Nešlehová,
B Rémillard and
O A Murphy
Biometrika, 2019, vol. 106, issue 1, 47-68
Abstract:
SUMMARY Statistics are proposed for testing the hypothesis that arbitrary random variables are mutually independent. The tests are consistent and well behaved for any marginal distributions; they can be used, for example, for contingency tables which are sparse or whose dimension depends on the sample size, as well as for mixed data. No regularity conditions, data jittering, or binning mechanisms are required. The statistics are rank-based functionals of Cramér–von Mises type whose asymptotic behaviour derives from the empirical multilinear copula process. Approximate $p$-values are computed using a wild bootstrap. The procedures are simple to implement and computationally efficient, and maintain their level well in moderate to large samples. Simulations suggest that the tests are robust with respect to the number of ties in the data, can easily detect a broad range of alternatives, and outperform existing procedures in many settings. Additional insight into their performance is provided through asymptotic local power calculations under contiguous alternatives. The procedures are illustrated on traumatic brain injury data.
Keywords: Independence test; Mixed data; Multilinear copula; Sparse contingency table; Wild bootstrap (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
http://hdl.handle.net/10.1093/biomet/asy059 (application/pdf)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:oup:biomet:v:106:y:2019:i:1:p:47-68.
Ordering information: This journal article can be ordered from
https://academic.oup.com/journals
Access Statistics for this article
Biometrika is currently edited by Paul Fearnhead
More articles in Biometrika from Biometrika Trust Oxford University Press, Great Clarendon Street, Oxford OX2 6DP, UK.
Bibliographic data for series maintained by Oxford University Press ().