EconPapers    
Economics at your fingertips  
 

Spectral density estimation for random fields via periodic embeddings

Joseph Guinness

Biometrika, 2019, vol. 106, issue 2, 267-286

Abstract: SummaryWe introduce methods for estimating the spectral density of a random field on a $d$-dimensional lattice from incomplete gridded data. Data are iteratively imputed onto an expanded lattice according to a model with a periodic covariance function. The imputations are convenient computationally, in that circulant embedding and preconditioned conjugate gradient methods can produce imputations in $O(n\log n)$ time and $O(n)$ memory. However, these so-called periodic imputations are motivated mainly by their ability to produce accurate spectral density estimates. In addition, we introduce a parametric filtering method that is designed to reduce periodogram smoothing bias. The paper contains theoretical results on properties of the imputed-data periodogram and numerical and simulation studies comparing the performance of the proposed methods to existing approaches in a number of scenarios. We present an application to a gridded satellite surface temperature dataset with missing values.

Keywords: Circulant embedding; Conjugate gradient; Covariance function; Gaussian process; Nonparametric estimation; Semiparametric estimation; Spatial statistics (search for similar items in EconPapers)
Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://hdl.handle.net/10.1093/biomet/asz004 (application/pdf)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:oup:biomet:v:106:y:2019:i:2:p:267-286.

Ordering information: This journal article can be ordered from
https://academic.oup.com/journals

Access Statistics for this article

Biometrika is currently edited by Paul Fearnhead

More articles in Biometrika from Biometrika Trust Oxford University Press, Great Clarendon Street, Oxford OX2 6DP, UK.
Bibliographic data for series maintained by Oxford University Press ().

 
Page updated 2025-03-19
Handle: RePEc:oup:biomet:v:106:y:2019:i:2:p:267-286.