Unbiased Hamiltonian Monte Carlo with couplings
J Heng and
P E Jacob
Biometrika, 2019, vol. 106, issue 2, 287-302
Abstract:
SummaryWe propose a method for parallelization of Hamiltonian Monte Carlo estimators. Our approach involves constructing a pair of Hamiltonian Monte Carlo chains that are coupled in such a way that they meet exactly after some random number of iterations. These chains can then be combined so that the resulting estimators are unbiased. This allows us to produce independent replicates in parallel and average them to obtain estimators that are consistent in the limit of the number of replicates, rather than in the usual limit of the number of Markov chain iterations. We investigate the scalability of our coupling in high dimensions on a toy example. The choice of algorithmic parameters and the efficiency of our proposed approach are then illustrated on a logistic regression with 300 covariates and a log-Gaussian Cox point processes model with low- to fine-grained discretizations.
Keywords: Coupling; Hamiltonian Monte Carlo method; Parallel computing; Unbiased estimation (search for similar items in EconPapers)
Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://hdl.handle.net/10.1093/biomet/asy074 (application/pdf)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:oup:biomet:v:106:y:2019:i:2:p:287-302.
Ordering information: This journal article can be ordered from
https://academic.oup.com/journals
Access Statistics for this article
Biometrika is currently edited by Paul Fearnhead
More articles in Biometrika from Biometrika Trust Oxford University Press, Great Clarendon Street, Oxford OX2 6DP, UK.
Bibliographic data for series maintained by Oxford University Press ().