EconPapers    
Economics at your fingertips  
 

Identifiability and estimation of structural vector autoregressive models for subsampled and mixed-frequency time series

A Tank, E B Fox and A Shojaie

Biometrika, 2019, vol. 106, issue 2, 433-452

Abstract: SummaryCausal inference in multivariate time series is challenging because the sampling rate may not be as fast as the time scale of the causal interactions, so the observed series is a subsampled version of the desired series. Furthermore, series may be observed at different sampling rates, yielding mixed-frequency series. To determine instantaneous and lagged effects between series at the causal scale, we take a model-based approach that relies on structural vector autoregressive models. We present a unifying framework for parameter identifiability and estimation under subsampling and mixed frequencies when the noise, or shocks, is non-Gaussian. By studying the structural case, we develop identifiability and estimation methods for the causal structure of lagged and instantaneous effects at the desired time scale. We further derive an exact expectation-maximization algorithm for inference in both subsampled and mixed-frequency settings. We validate our approach in simulated scenarios and on a climate and an econometric dataset.

Keywords: Mixed frequency; Non-Gaussian error; Structural vector autoregressive model; Subsampling; Time series (search for similar items in EconPapers)
Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (11)

Downloads: (external link)
http://hdl.handle.net/10.1093/biomet/asz007 (application/pdf)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:oup:biomet:v:106:y:2019:i:2:p:433-452.

Ordering information: This journal article can be ordered from
https://academic.oup.com/journals

Access Statistics for this article

Biometrika is currently edited by Paul Fearnhead

More articles in Biometrika from Biometrika Trust Oxford University Press, Great Clarendon Street, Oxford OX2 6DP, UK.
Bibliographic data for series maintained by Oxford University Press ().

 
Page updated 2025-03-19
Handle: RePEc:oup:biomet:v:106:y:2019:i:2:p:433-452.