Hierarchical Bayes versus empirical Bayes density predictors under general divergence loss
M Ghosh and
T Kubokawa
Biometrika, 2019, vol. 106, issue 2, 495-500
Abstract:
SummaryConsider the problem of finding a predictive density of a new observation drawn independently of observations sampled from a multivariate normal distribution with the same unknown mean vector and the same known variance under general divergence loss. In this paper, we consider two kinds of prior distribution for the mean vector: one is a multivariate normal distribution with mean based on unknown regression coefficients, and the other further assumes that the regression coefficients have uniform prior distributions. The two kinds of prior distribution provide, respectively, the empirical Bayes and hierarchical Bayes predictive distributions. Both predictive distributions have the same mean, but they have different covariance matrices, with the hierarchical Bayes predictive distribution having a larger covariance matrix. We compare the two Bayesian predictive densities in terms of their frequentist risks under the general divergence loss and show that the hierarchical Bayes predictive density has a uniformly smaller risk than the empirical Bayes predictive density. As an offshoot of our result, we show that best linear unbiased predictors in mixed linear models, optimal under normality and squared error loss, maintain their optimality under the general divergence loss.
Keywords: Best linear unbiased predictor; Divergence loss; Empirical Bayes predictive density; Hierarchical Bayes predictive density; Prediction; Predictive probability density function (search for similar items in EconPapers)
Date: 2019
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1093/biomet/asy073 (application/pdf)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:oup:biomet:v:106:y:2019:i:2:p:495-500.
Ordering information: This journal article can be ordered from
https://academic.oup.com/journals
Access Statistics for this article
Biometrika is currently edited by Paul Fearnhead
More articles in Biometrika from Biometrika Trust Oxford University Press, Great Clarendon Street, Oxford OX2 6DP, UK.
Bibliographic data for series maintained by Oxford University Press ().