Conjugate Bayes for probit regression via unified skew-normal distributions
Daniele Durante
Biometrika, 2019, vol. 106, issue 4, 765-779
Abstract:
SummaryRegression models for dichotomous data are ubiquitous in statistics. Besides being useful for inference on binary responses, these methods serve as building blocks in more complex formulations, such as density regression, nonparametric classification and graphical models. Within the Bayesian framework, inference proceeds by updating the priors for the coefficients, typically taken to be Gaussians, with the likelihood induced by probit or logit regressions for the responses. In this updating, the apparent absence of a tractable posterior has motivated a variety of computational methods, including Markov chain Monte Carlo routines and algorithms that approximate the posterior. Despite being implemented routinely, Markov chain Monte Carlo strategies have mixing or time-inefficiency issues in large-$p$ and small-$n$ studies, whereas approximate routines fail to capture the skewness typically observed in the posterior. In this article it is proved that the posterior distribution for the probit coefficients has a unified skew-normal kernel under Gaussian priors. This result allows efficient Bayesian inference for a wide class of applications, especially in large-$p$ and small-to-moderate-$n$ settings where state-of-the-art computational methods face notable challenges. These advances are illustrated in a genetic study, and further motivate the development of a wider class of conjugate priors for probit models, along with methods for obtaining independent and identically distributed samples from the unified skew-normal posterior.
Keywords: Bayesian inference; Binary data; Conjugacy; Probit regression; Unified skew-normal distribution (search for similar items in EconPapers)
Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (9)
Downloads: (external link)
http://hdl.handle.net/10.1093/biomet/asz034 (application/pdf)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:oup:biomet:v:106:y:2019:i:4:p:765-779.
Ordering information: This journal article can be ordered from
https://academic.oup.com/journals
Access Statistics for this article
Biometrika is currently edited by Paul Fearnhead
More articles in Biometrika from Biometrika Trust Oxford University Press, Great Clarendon Street, Oxford OX2 6DP, UK.
Bibliographic data for series maintained by Oxford University Press ().