Within-cluster resampling for multilevel models under informative cluster size
D Lee,
J K Kim and
C J Skinner
Biometrika, 2019, vol. 106, issue 4, 965-972
Abstract:
SummaryA within-cluster resampling method is proposed for fitting a multilevel model in the presence of informative cluster size. Our method is based on the idea of removing the information in the cluster sizes by drawing bootstrap samples which contain a fixed number of observations from each cluster. We then estimate the parameters by maximizing an average, over the bootstrap samples, of a suitable composite loglikelihood. The consistency of the proposed estimator is shown and does not require that the correct model for cluster size is specified. We give an estimator of the covariance matrix of the proposed estimator, and a test for the noninformativeness of the cluster sizes. A simulation study shows, as in Neuhaus & McCulloch (2011), that the standard maximum likelihood estimator exhibits little bias for some regression coefficients. However, for those parameters which exhibit nonnegligible bias, the proposed method is successful in correcting for this bias.
Keywords: Bootstrap; Composite likelihood; Generalized linear mixed model; Model misspecification; Parametric fractional imputation (search for similar items in EconPapers)
Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1093/biomet/asz035 (application/pdf)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:oup:biomet:v:106:y:2019:i:4:p:965-972.
Ordering information: This journal article can be ordered from
https://academic.oup.com/journals
Access Statistics for this article
Biometrika is currently edited by Paul Fearnhead
More articles in Biometrika from Biometrika Trust Oxford University Press, Great Clarendon Street, Oxford OX2 6DP, UK.
Bibliographic data for series maintained by Oxford University Press ().