EconPapers    
Economics at your fingertips  
 

Bayesian jackknife empirical likelihood

Y Cheng and Y Zhao

Biometrika, 2019, vol. 106, issue 4, 981-988

Abstract: SummaryEmpirical likelihood is a very powerful nonparametric tool that does not require any distributional assumptions. Lazar (2003) showed that in Bayesian inference, if one replaces the usual likelihood with the empirical likelihood, then posterior inference is still valid when the functional of interest is a smooth function of the posterior mean. However, it is not clear whether similar conclusions can be obtained for parameters defined in terms of $U$-statistics. We propose the so-called Bayesian jackknife empirical likelihood, which replaces the likelihood component with the jackknife empirical likelihood. We show, both theoretically and empirically, the validity of the proposed method as a general tool for Bayesian inference. Empirical analysis shows that the small-sample performance of the proposed method is better than its frequentist counterpart. Analysis of a case-control study for pancreatic cancer is used to illustrate the new approach.

Keywords: Bayesian inference; Coverage rate; Credible interval; Empirical likelihood; Jackknife (search for similar items in EconPapers)
Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://hdl.handle.net/10.1093/biomet/asz031 (application/pdf)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:oup:biomet:v:106:y:2019:i:4:p:981-988.

Ordering information: This journal article can be ordered from
https://academic.oup.com/journals

Access Statistics for this article

Biometrika is currently edited by Paul Fearnhead

More articles in Biometrika from Biometrika Trust Oxford University Press, Great Clarendon Street, Oxford OX2 6DP, UK.
Bibliographic data for series maintained by Oxford University Press ().

 
Page updated 2025-03-19
Handle: RePEc:oup:biomet:v:106:y:2019:i:4:p:981-988.