A conditional density estimation partition model using logistic Gaussian processes
R D Payne,
N Guha,
Y Ding and
B K Mallick
Biometrika, 2020, vol. 107, issue 1, 173-190
Abstract:
SummaryConditional density estimation seeks to model the distribution of a response variable conditional on covariates. We propose a Bayesian partition model using logistic Gaussian processes to perform conditional density estimation. The partition takes the form of a Voronoi tessellation and is learned from the data using a reversible jump Markov chain Monte Carlo algorithm. The methodology models data in which the density changes sharply throughout the covariate space, and can be used to determine where important changes in the density occur. The Markov chain Monte Carlo algorithm involves a Laplace approximation on the latent variables of the logistic Gaussian process model which marginalizes the parameters in each partition element, allowing an efficient search of the approximate posterior distribution of the tessellation. The method is consistent when the density is piecewise constant in the covariate space or when the density is Lipschitz continuous with respect to the covariates. In simulation and application to wind turbine data, the model successfully estimates the partition structure and conditional distribution.
Keywords: Bayesian conditional density estimation; Laplace approximation; Logistic Gaussian process; Partition model; Reversible jump Markov chain Monte Carlo (search for similar items in EconPapers)
Date: 2020
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1093/biomet/asz064 (application/pdf)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:oup:biomet:v:107:y:2020:i:1:p:173-190.
Ordering information: This journal article can be ordered from
https://academic.oup.com/journals
Access Statistics for this article
Biometrika is currently edited by Paul Fearnhead
More articles in Biometrika from Biometrika Trust Oxford University Press, Great Clarendon Street, Oxford OX2 6DP, UK.
Bibliographic data for series maintained by Oxford University Press ().