EconPapers    
Economics at your fingertips  
 

Bayesian constraint relaxation

Leo L Duan, Alexander L Young, Akihiko Nishimura and David B Dunson

Biometrika, 2020, vol. 107, issue 1, 191-204

Abstract: SummaryPrior information often takes the form of parameter constraints. Bayesian methods include such information through prior distributions having constrained support. By using posterior sampling algorithms, one can quantify uncertainty without relying on asymptotic approximations. However, sharply constrained priors are not necessary in some settings and tend to limit modelling scope to a narrow set of distributions that are tractable computationally. We propose to replace the sharp indicator function of the constraint with an exponential kernel, thereby creating a close-to-constrained neighbourhood within the Euclidean space in which the constrained subspace is embedded. This kernel decays with distance from the constrained space at a rate depending on a relaxation hyperparameter. By avoiding the sharp constraint, we enable use of off-the-shelf posterior sampling algorithms, such as Hamiltonian Monte Carlo, facilitating automatic computation in a broad range of models. We study the constrained and relaxed distributions under multiple settings and theoretically quantify their differences. Application of the method is illustrated through several novel modelling examples.

Keywords: Constrained Bayes; Constraint function; Factor model; Manifold constraint; Ordered simplex; Orthonormality; Parameter restriction; Shrinkage (search for similar items in EconPapers)
Date: 2020
References: Add references at CitEc
Citations:

Downloads: (external link)
http://hdl.handle.net/10.1093/biomet/asz069 (application/pdf)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:oup:biomet:v:107:y:2020:i:1:p:191-204.

Ordering information: This journal article can be ordered from
https://academic.oup.com/journals

Access Statistics for this article

Biometrika is currently edited by Paul Fearnhead

More articles in Biometrika from Biometrika Trust Oxford University Press, Great Clarendon Street, Oxford OX2 6DP, UK.
Bibliographic data for series maintained by Oxford University Press ().

 
Page updated 2025-03-19
Handle: RePEc:oup:biomet:v:107:y:2020:i:1:p:191-204.