Simplified integrated nested Laplace approximation
Simon N Wood
Biometrika, 2020, vol. 107, issue 1, 223-230
Abstract:
Summary Integrated nested Laplace approximation provides accurate and efficient approximations for marginal distributions in latent Gaussian random field models. Computational feasibility of the original Rue et al. (2009) methods relies on efficient approximation of Laplace approximations for the marginal distributions of the coefficients of the latent field, conditional on the data and hyperparameters. The computational efficiency of these approximations depends on the Gaussian field having a Markov structure. This note provides equivalent efficiency without requiring the Markov property, which allows for straightforward use of latent Gaussian fields without a sparse structure, such as reduced rank multi-dimensional smoothing splines. The method avoids the approximation for conditional modes used in Rue et al. (2009), and uses a log determinant approximation based on a simple quasi-Newton update. The latter has a desirable property not shared by the most commonly used variant of the original method.
Keywords: Additive model; Bayesian computation; Cholesky update; Quasi-Newton method; Smoothing (search for similar items in EconPapers)
Date: 2020
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1093/biomet/asz044 (application/pdf)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:oup:biomet:v:107:y:2020:i:1:p:223-230.
Ordering information: This journal article can be ordered from
https://academic.oup.com/journals
Access Statistics for this article
Biometrika is currently edited by Paul Fearnhead
More articles in Biometrika from Biometrika Trust Oxford University Press, Great Clarendon Street, Oxford OX2 6DP, UK.
Bibliographic data for series maintained by Oxford University Press ().