Measurement errors in the binary instrumental variable model
Zhichao Jiang and
Peng Ding
Biometrika, 2020, vol. 107, issue 1, 238-245
Abstract:
Summary Instrumental variable methods can identify causal effects even when the treatment and outcome are confounded. We study the problem of imperfect measurements of the binary instrumental variable, treatment and outcome. We first consider nondifferential measurement errors, that is, the mismeasured variable does not depend on other variables given its true value. We show that the measurement error of the instrumental variable does not bias the estimate, that the measurement error of the treatment biases the estimate away from zero, and that the measurement error of the outcome biases the estimate toward zero. Moreover, we derive sharp bounds on the causal effects without additional assumptions. These bounds are informative because they exclude zero. We then consider differential measurement errors, and focus on sensitivity analyses in those settings.
Keywords: Complier average causal effect; Misclassification; Noncompliance; Sensitivity analysis; Sharp bound (search for similar items in EconPapers)
Date: 2020
References: Add references at CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://hdl.handle.net/10.1093/biomet/asz060 (application/pdf)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:oup:biomet:v:107:y:2020:i:1:p:238-245.
Ordering information: This journal article can be ordered from
https://academic.oup.com/journals
Access Statistics for this article
Biometrika is currently edited by Paul Fearnhead
More articles in Biometrika from Biometrika Trust Oxford University Press, Great Clarendon Street, Oxford OX2 6DP, UK.
Bibliographic data for series maintained by Oxford University Press ().