EconPapers    
Economics at your fingertips  
 

High-dimensional causal discovery under non-Gaussianity Abstract: Summary We consider graphical models based on a recursive system of linear structural equations. This implies that there is an ordering, $\sigma$, of the variables such that each observed variable $Y_v$ is a linear function of a variable-specific error term and the other observed variables $Y_u$ with $\sigma(u)

Y Samuel Wang and Mathias Drton

Biometrika, 2020, vol. 107, issue 1, 41-59

Keywords: Causal discovery; Directed graphical model; High-dimensional statistics; Non-Gaussian data; Structural equation model (search for similar items in EconPapers)
Date: 2020
References: Add references at CitEc
Citations:

Downloads: (external link)
http://hdl.handle.net/10.1093/biomet/asz055 (application/pdf)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:oup:biomet:v:107:y:2020:i:1:p:41-59.

Ordering information: This journal article can be ordered from
https://academic.oup.com/journals

Access Statistics for this article

Biometrika is currently edited by Paul Fearnhead

More articles in Biometrika from Biometrika Trust Oxford University Press, Great Clarendon Street, Oxford OX2 6DP, UK.
Bibliographic data for series maintained by Oxford University Press ().

 
Page updated 2025-03-19
Handle: RePEc:oup:biomet:v:107:y:2020:i:1:p:41-59.