The essential histogram
Housen Li,
Axel Munk,
Hannes Sieling and
Guenther Walther
Biometrika, 2020, vol. 107, issue 2, 347-364
Abstract:
SummaryThe histogram is widely used as a simple, exploratory way of displaying data, but it is usually not clear how to choose the number and size of the bins. We construct a confidence set of distribution functions that optimally deal with the two main tasks of the histogram: estimating probabilities and detecting features such as increases and modes in the distribution. We define the essential histogram as the histogram in the confidence set with the fewest bins. Thus the essential histogram is the simplest visualization of the data that optimally achieves the main tasks of the histogram. The only assumption we make is that the data are independent and identically distributed. We provide a fast algorithm for computing the essential histogram and illustrate our method with examples.
Keywords: Histogram; Mode detection; Multi-scale testing; Optimal estimation; Significant feature (search for similar items in EconPapers)
Date: 2020
References: Add references at CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://hdl.handle.net/10.1093/biomet/asz081 (application/pdf)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:oup:biomet:v:107:y:2020:i:2:p:347-364.
Ordering information: This journal article can be ordered from
https://academic.oup.com/journals
Access Statistics for this article
Biometrika is currently edited by Paul Fearnhead
More articles in Biometrika from Biometrika Trust Oxford University Press, Great Clarendon Street, Oxford OX2 6DP, UK.
Bibliographic data for series maintained by Oxford University Press ().