EconPapers    
Economics at your fingertips  
 

On the use of approximate Bayesian computation Markov chain Monte Carlo with inflated tolerance and post-correction

Matti Vihola and Jordan Franks

Biometrika, 2020, vol. 107, issue 2, 381-395

Abstract: Summary Approximate Bayesian computation enables inference for complicated probabilistic models with intractable likelihoods using model simulations. The Markov chain Monte Carlo implementation of approximate Bayesian computation is often sensitive to the tolerance parameter: low tolerance leads to poor mixing and large tolerance entails excess bias. We propose an approach that involves using a relatively large tolerance for the Markov chain Monte Carlo sampler to ensure sufficient mixing and post-processing the output, leading to estimators for a range of finer tolerances. We introduce an approximate confidence interval for the related post-corrected estimators and propose an adaptive approximate Bayesian computation Markov chain Monte Carlo algorithm, which finds a balanced tolerance level automatically based on acceptance rate optimization. Our experiments show that post-processing-based estimators can perform better than direct Markov chain Monte Carlo targeting a fine tolerance, that our confidence intervals are reliable, and that our adaptive algorithm leads to reliable inference with little user specification.

Keywords: Adaptive algorithm; Approximate Bayesian computation; Confidence interval; Importance sampling; Markov chain Monte Carlo; Tolerance choice (search for similar items in EconPapers)
Date: 2020
References: Add references at CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://hdl.handle.net/10.1093/biomet/asz078 (application/pdf)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:oup:biomet:v:107:y:2020:i:2:p:381-395.

Ordering information: This journal article can be ordered from
https://academic.oup.com/journals

Access Statistics for this article

Biometrika is currently edited by Paul Fearnhead

More articles in Biometrika from Biometrika Trust Oxford University Press, Great Clarendon Street, Oxford OX2 6DP, UK.
Bibliographic data for series maintained by Oxford University Press ().

 
Page updated 2025-03-19
Handle: RePEc:oup:biomet:v:107:y:2020:i:2:p:381-395.