Determining the dependence structure of multivariate extremes
E S Simpson,
J L Wadsworth and
J A Tawn
Biometrika, 2020, vol. 107, issue 3, 513-532
Abstract:
SummaryIn multivariate extreme value analysis, the nature of the extremal dependence between variables should be considered when selecting appropriate statistical models. Interest often lies in determining which subsets of variables can take their largest values simultaneously while the others are of smaller order. Our approach to this problem exploits hidden regular variation properties on a collection of nonstandard cones, and provides a new set of indices that reveal aspects of the extremal dependence structure not available through existing measures of dependence. We derive theoretical properties of these indices, demonstrate their utility through a series of examples, and develop methods of inference that also estimate the proportion of extremal mass associated with each cone. We apply the methods to river flows in the U.K., estimating the probabilities of different subsets of sites being large simultaneously.
Keywords: Asymptotic independence; Extremal dependence structure; Hidden regular variation; Multivariate regular variation (search for similar items in EconPapers)
Date: 2020
References: Add references at CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://hdl.handle.net/10.1093/biomet/asaa018 (application/pdf)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:oup:biomet:v:107:y:2020:i:3:p:513-532.
Ordering information: This journal article can be ordered from
https://academic.oup.com/journals
Access Statistics for this article
Biometrika is currently edited by Paul Fearnhead
More articles in Biometrika from Biometrika Trust Oxford University Press, Great Clarendon Street, Oxford OX2 6DP, UK.
Bibliographic data for series maintained by Oxford University Press ().