A nonparametric approach to high-dimensional k-sample comparison problems
Subhadeep Mukhopadhyay and
Kaijun Wang
Biometrika, 2020, vol. 107, issue 3, 555-572
Abstract:
SummaryHigh-dimensional $k$-sample comparison is a common task in applications. We construct a class of easy-to-implement distribution-free tests based on new nonparametric tools and unexplored connections with spectral graph theory. The test is shown to have various desirable properties and a characteristic exploratory flavour that has practical consequences for statistical modelling. Numerical examples show that the proposed method works surprisingly well across a broad range of realistic situations.
Keywords: Distribution-free method; Graph-based nonparametric approach; High-dimensional exploratory analysis; High-dimensional k-sample comparison; Spectral graph partitioning (search for similar items in EconPapers)
Date: 2020
References: Add references at CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://hdl.handle.net/10.1093/biomet/asaa015 (application/pdf)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:oup:biomet:v:107:y:2020:i:3:p:555-572.
Ordering information: This journal article can be ordered from
https://academic.oup.com/journals
Access Statistics for this article
Biometrika is currently edited by Paul Fearnhead
More articles in Biometrika from Biometrika Trust Oxford University Press, Great Clarendon Street, Oxford OX2 6DP, UK.
Bibliographic data for series maintained by Oxford University Press ().