Jump or kink: on super-efficiency in segmented linear regression breakpoint estimation
Yining Chen
Biometrika, 2021, vol. 108, issue 1, 215-222
Abstract:
SummaryWe consider the problem of segmented linear regression with a single breakpoint, with the focus on estimating the location of the breakpoint. If $n$ is the sample size, we show that the global minimax convergence rate for this problem in terms of the mean absolute error is $O(n^{-1/3})$. On the other hand, we demonstrate the construction of a super-efficient estimator that achieves the pointwise convergence rate of either $O(n^{-1})$ or $O(n^{-1/2})$ for every fixed parameter value, depending on whether the structural change is a jump or a kink. The implications of this example and a potential remedy are discussed.
Keywords: Changepoint; Minimax rate; Pointwise rate; Structural break (search for similar items in EconPapers)
Date: 2021
References: Add references at CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://hdl.handle.net/10.1093/biomet/asaa049 (application/pdf)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:oup:biomet:v:108:y:2021:i:1:p:215-222.
Ordering information: This journal article can be ordered from
https://academic.oup.com/journals
Access Statistics for this article
Biometrika is currently edited by Paul Fearnhead
More articles in Biometrika from Biometrika Trust Oxford University Press, Great Clarendon Street, Oxford OX2 6DP, UK.
Bibliographic data for series maintained by Oxford University Press ().