In search of lost mixing time: adaptive Markov chain Monte Carlo schemes for Bayesian variable selection with very large p
J E Griffin,
K G Łatuszyński and
Mark Steel
Biometrika, 2021, vol. 108, issue 1, 53-69
Abstract:
SummaryThe availability of datasets with large numbers of variables is rapidly increasing. The effective application of Bayesian variable selection methods for regression with these datasets has proved difficult since available Markov chain Monte Carlo methods do not perform well in typical problem sizes of interest. We propose new adaptive Markov chain Monte Carlo algorithms to address this shortcoming. The adaptive design of these algorithms exploits the observation that in large-$p$, small-$n$ settings, the majority of the $p$ variables will be approximately uncorrelated a posteriori. The algorithms adaptively build suitable nonlocal proposals that result in moves with squared jumping distance significantly larger than standard methods. Their performance is studied empirically in high-dimensional problems and speed-ups of up to four orders of magnitude are observed.
Keywords: Expected squared jumping distance; High-dimensional data; Large-p; small-n problem; Linear regression; Optimal scaling; Spike-and-slab prior; Variable selection (search for similar items in EconPapers)
Date: 2021
References: Add references at CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://hdl.handle.net/10.1093/biomet/asaa055 (application/pdf)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:oup:biomet:v:108:y:2021:i:1:p:53-69.
Ordering information: This journal article can be ordered from
https://academic.oup.com/journals
Access Statistics for this article
Biometrika is currently edited by Paul Fearnhead
More articles in Biometrika from Biometrika Trust Oxford University Press, Great Clarendon Street, Oxford OX2 6DP, UK.
Bibliographic data for series maintained by Oxford University Press ().